

Fig. 8
Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{\mathrm{e}^{x}+\mathrm{e}^{-x}+2}$.
(i) Show algebraically that $\mathrm{f}(x)$ is an even function, and state how this property relates to the curve $y=\mathrm{f}(x)$.
(ii) Find $\mathrm{f}^{\prime}(x)$.
(iii) Show that $\mathrm{f}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$.
(iv) Hence, using the substitution $u=\mathrm{e}^{x}+1$, or otherwise, find the exact area enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, and the lines $x=0$ and $x=1$.
(v) Show that there is only one point of intersection of the curves $y=\mathrm{f}(x)$ and $y=\frac{1}{4} \mathrm{e}^{x}$, and find its coordinates.

2 Evaluate $\int_{0}^{\frac{1}{6} \pi} \cos 3 x \mathrm{~d} x$.
[3]

3 (i) Differentiate $x \cos 2 x$ with respect to x.
(ii) Integrate $x \cos 2 x$ with respect to x.

4 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{\sqrt{2 x-x^{2}}}$.
The curve has asymptotes $x=0$ and $x=a$.

Fig. 9
(i) Find a. Hence write down the domain of the function.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-1}{\left(2 x-x^{2}\right)^{\frac{3}{2}}}$.

Hence find the coordinates of the turning point of the curve, and write down the range of the function.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\frac{1}{\sqrt{1-x^{2}}}$.
(iii) (A) Show algebraically that $\mathrm{g}(x)$ is an even function.
(B) Show that $\mathrm{g}(x-1)=\mathrm{f}(x)$.
(C) Hence prove that the curve $y=\mathrm{f}(x)$ is symmetrical, and state its line of symmetry.

